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Abstract. We present the results of extensive molecular dynamics computer simulations in which the high
frequency dynamics of silica, i.e. for frequencies ν > 0.5 THz, is investigated in the viscous liquid state
as well as in the glass state. We characterize the properties of high frequency sound modes by analyzing
Jl(q, ν) and Jt(q, ν), the longitudinal and transverse current correlation function, respectively. For wave-
vectors q > 0.4 Å−1 the spectra are sitting on top of a flat background. The dynamic structure factor
S(q, ν) exhibits for q > 0.23 Å−1 a boson peak which is located nearly independent of q around 1.7 THz
and for which the intensity scales approximately linearly with temperature. We show that the low frequency
part of the boson peak is mainly due to the elastic scattering of transverse acoustic modes with frequencies
around 1 THz. The strength of this scattering depends on q and is largest around q = 1.7 Å−1, the location
of the first sharp diffraction peak in the static structure factor. By studying S(q, ν) for different system
sizes we show that strong finite size effects are present in the low frequency part of the boson peak in that
for small systems part of its intensity is missing. We discuss the consequences of these finite size effects for
the structural relaxation.

PACS. 61.20.Lc Time-dependent properties; relaxation – 61.20.Ja Computer simulation of liquid structure
– 02.70.Ns Molecular dynamics and particle methods – 64.70.Pf Glass transitions

1 Introduction

The investigation of the vibrational dynamics of super-
cooled liquids and glasses is a challenging task since these
systems do not have the property of translational invari-
ance as it is the case for crystals. Of special interest is
the region of intermediate wave-vectors at which collective
excitations, i.e. longitudinal and transverse sound waves,
begin to be affected strongly by the structural disorder.
Molecular dynamics (MD) simulations are well suited to
study vibrational features at these intermediate wave-
vectors, say with magnitude q ≥ 0.1 Å−1, corresponding
to frequencies ν in the THz band. This paper is concerned
with the simulation of the vibrational dynamics of amor-
phous silica, which is the prototype of a so-called strong
glassformer [1]. Its structure exhibits order beyond the
length scale of the first nearest neighbors in that it forms
a disordered network of SiO4-tetrahedra leading to a peak
in the static structure factor around q = 1.6 Å−1 [2]. In re-
cent years the high frequency dynamics of silica has been
the subject of an intense debate because its Raman and
neutron scattering spectra [3,4] show a so-called boson
peak around 1 THz, which is also present in many other
glassformers but normally gives a less intense contribution
to the spectra than in silica. This feature appears also in
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experiments as an excess over the Debye density of states
or, equivalently, over Debye’s T 3-law in the specific heat
around the temperature T = 10 K [5,6].

Recently Benassi et al. [7] used an inelastic X-ray scat-
tering experiment to give evidence that in silica propa-
gating longitudinal sound modes persist up to 0.35 Å−1,
which corresponds to frequencies well above the location
of the boson peak. Therefore Benassi et al. argued that
the boson peak has its origin in these propagating sound
modes. In contrast to this suggestion, Vacher et al. [8–11]
concluded from their experiments that around 1 THz there
is a crossover to strong scattering of acoustic modes by the
disorder which leads to the occurrence of the boson peak.

Simple models have been suggested to explain the
origin of the boson peak. From the soft potential
model [12,13] the idea is put forward that anharmonic lo-
calized vibrations coexist with propagating high frequency
sound modes in the frequency range around the location
of the boson peak. In the case of silica these anharmonic
soft modes have been related to coupled SiO4-tetrahedra
vibrations [6]. Wischnewski et al. [14] have analyzed their
neutron scattering data of silica within the soft potential
model, and have concluded that the sound waves are in-
deed scattered from such local vibrational modes below
1 THz, whereas above this frequency static Rayleigh scat-
tering from the atomic disorder takes place. Schirmacher
et al. [15] have studied a system of coupled harmonic os-
cillators with a random distribution of force constants.
In this model they have found an excess over the Debye
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behavior in the density of states which they have in-
terpreted as an analogue to the boson peak feature in
real structural glasses. In agreement with this model,
Sokolov [16] proposed that the boson peak is related to
the strong scattering of acoustic like vibrations by fluctu-
ations of the elastic constants.

A feature which shares many properties with the bo-
son peak is also found within the mode-coupling theory
(MCT) of the glass transition: In the ideal glass state
where all particles are trapped in the cages formed by their
neighbors, the spectrum of the density-density correlation
function is a superposition of harmonic oscillator spectra
which is due to the variety of cages in which the parti-
cles are trapped [17]. It is remarkable in this context that
the whole light scattering spectra of glycerol, including
the boson peak, have been successfully described within a
schematic MCT model [18], and very recently Götze and
Mayr have shown that deep inside the glass state, i.e. at
temperatures well below the MCT temperature Tc, the
theory predicts dynamical features which are very remi-
niscent to the boson peak [19].

In the last three years also MD simulations tried to
give insight into the vibrational dynamics of silica [20–27],
and other network forming glasses like ZnCl2 [28]. Most of
these investigations have determined the eigenvalues and
eigenvectors from the diagonalized dynamical matrix in
order to analyze the dynamics within the harmonic ap-
proximation. Although the full information of the vibra-
tional part of the dynamics is given by the eigenmodes
(of course only within the harmonic approximation) the
origin of the boson peak remains a puzzle. One reason for
this is the smallness of the system sizes (20–40 Å) which
have been used in the aforementioned studies, which has
the effect that parts of the boson peak are missing (see
below). A second reason is the difficulty of analyzing the
boson peak feature in terms of eigenmodes since, as we
will discuss in detail below, in the case of amorphous
silica the modes constituting the boson peak cannot be
described as pure phonons but only as the result of in-
teracting phonons. Finally it has to be emphasized that
in the glass the shape of the boson peak depends signifi-
cantly on the cooling history of the sample [29]. Thus this
dependence is completely ignored if one quenches the sys-
tem to low temperatures and considers only one cooling
rate, as it has been done up to now. Thus it is clear that
investigating the high frequency dynamics in equilibrium
is important to obtain a better understanding of it.

In order to avoid these problems we use in the present
work a large system size and calculate the exact cur-
rent and density correlation functions in order to inves-
tigate their dependence on wave-vector q and frequency
ν. Therefore, we are able to study the temperature de-
pendence of the high frequency dynamics of silica in the
liquid state as well as in the glass state and to compare the
two. Moreover, we are able to give insight into the rela-
tionship between the vibrational dynamics and structural
relaxation in the silica melt. Thus this work allows us to
test, at least on a qualitative level, some of the theoretical
predictions of Götze and Mayr [19]. The rest of the pa-

per is organized as follows: In the next section we give an
overview of the main computational details. In Section 3
we discuss the vibrational dynamics of our silica model by
means of the current and density correlation functions. In
Section 4 we summarize and discuss the results.

2 Model and details of the simulations

The model potential we use to describe the interactions
between the ions in silica is the one proposed by van Beest,
Kramer, and van Santen (BKS) [30] which has the follow-
ing functional form:

φ(r) =
qαqβe

2

r
+Aαβ exp (−Bαβr) −

Cαβ
r6

α, β ∈ [Si,O].

(1)

Here r is the distance between an ion of type α and an
ion of type β. The values of the parameters Aαβ , Bαβ and
Cαβ can be found in the original publication. The short
range part of this potential was truncated and shifted at
5.5 Å. The Coulombic part of the potential was evaluated
by means of Ewald sums for which further details can be
found elsewhere [31]. In recent simulations [20,29,31–35]
it has been shown that the BKS potential (1) reproduces
many static and dynamic properties of real silica, such as
the static structure factor, the experimental glass tran-
sition temperature, and the activation energies from the
diffusion constants and the viscosity, very well. Thus it
can be considered as a reliable model for this material.

We have simulated a system with 8016 ions. The size
of the simulation box was fixed to 48.365 Å correspond-
ing to a density of 2.37 g/cm3. Thus, the smallest wave-
vector that is compatible with our simulation box has the
magnitude q = 0.13 Å−1. In order to study finite size ef-
fects we have done also simulations for smaller systems,
and the details of these simulations are given below. In
the following we will investigate the fully equilibrated liq-
uid state at T = 6100 K, 3760 K, and 2750 K and the
glass state at T = 1670 K, 1050 K, and 300 K. In the
liquid state we equilibrated the system first in the NVT
ensemble at each temperature, and after that we started
microcanonical simulations by means of the velocity form
of the Verlet algorithm. During the equilibration the tem-
perature was kept constant by using a stochastic collision
algorithm. The time step we used was 1.6 fs, and in order
to improve the statistics we simulated at each temperature
two independent runs. At T = 2750 K the length of the
equilibration runs was 13 million time steps followed by
the microcanonical production runs over 12 million time
steps, which corresponds to a real time of 20 ns. Dur-
ing the two production runs we have stored on a linear
time scale 30 configurations, each of which have subse-
quently been used as the starting configuration of a new
simulation for investigating the high frequency dynamics.
We mention that the pressure at T = 2750 K is around
0.9 GPa. Further details on the simulation of the liquid
state can be found elsewhere [31]. The starting-point for
producing the glass state were two equilibrated configu-
rations at T = 2900 K at which the equilibration time
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was 4 million time steps (6.5 ns real time). By coupling
the system to an external heat bath, the temperature was
subsequently decreased linearly in time within one million
time steps to 0 K. This corresponds to a cooling rate of
about 1.8 × 1012 K/s. With this cooling rate the system
falls out of equilibrium at around 2850 K which thus corre-
sponds to the fictive temperature of the glass. (Note that
this temperature is well above the melting temperature of
this material which experimentally is found to be around
2000 K, a value which is reproduced reasonably well by
the BKS model [36]. Furthermore we mention that this
glass transition temperature is also above 2750 K, i.e. the
lowest temperature at which we equilibrated the sample,
since the starting temperature for the quench was 2900 K.)
During the cooling procedure we stored configurations at
the temperatures mentioned above which we used as start-
ing configurations in order to anneal the system for 5×105

time steps at constant temperature. Afterwards we prop-
agated the system over 5 × 105 time steps in the micro-
canonical ensemble and stored configurations every 105

time steps. Thus at the end we had at each of the three
temperatures in the glass state 22 starting configurations
for the investigation of the high frequency dynamics. The
pressure for our glass structures is 0.52 GPa at T = 300 K,
0.69 GPa at T = 1050 K, and 0.8 GPa at T = 1670 K.

In this paper we are mainly interested in frequency
dependent correlation functions. Therefore time Fourier
transformations have to be calculated which was done
by making use of the Wiener-Khinchin theorem. It says
that the Fourier transformation of a correlation func-
tion C(t) = 〈x(t)x(0)〉 (x(t): density, longitudinal cur-
rent, transverse current) is given by the power spectrum
Z(ν) = |a(ν)|2 where a(ν) denotes the Fourier trans-
form of the time series x(t). The time series were trans-
formed via fast Fourier transformation whereby we applied
a Welch window function [37]. Usually we have calculated
the time series for the density and the currents over 8192
time steps (13.4 ps real time) by using the aforementioned
starting configurations. This results in a frequency resolu-
tion of about 0.1 THz. The reliability of the Fourier trans-
formation was tested by calculating also time series over
16384 time steps and in these test cases we have found
indeed identical spectra, at least for ν > 0.3 THz.

3 Results

3.1 Current correlations

In this section we analyze the vibrational features of our
silica model by means of the longitudinal and transverse
current correlation function Jl(q, ν) and Jt(q, ν), respec-
tively, which depend on the magnitude of the wave-vector
q and the frequency ν. These are defined as [38]

Jα(q, ν) =
1
N

∫ ∞
−∞

dt exp (i2πνt) 〈jα(q, t) · jα(−q, 0)〉

(2)
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Fig. 1. Longitudinal and transverse current correlation func-
tions (filled and open symbols, respectively) for the oxygen-
oxygen correlations at the temperature T = 2750 K. (a)
The peaks moving to higher frequencies correspond to q =
0.13 Å−1, q = 0.18 Å−1, q = 0.23 Å−1, and q = 0.26 Å−1 for
the longitudinal and transverse functions, respectively. Note
that the curves for Jl(q, ν) are multiplied by a factor of 4. (b)
q = 1.0 Å−1. The solid line in (b) corresponds to the sum of
Jl and Jt.

where the longitudinal part (α = l) and the transverse
part (α = t) of the total current

j(q, t) =
∑
k

ṙk(t) exp (iq · rk(t)) (3)

are given by

jl(q, t) =
q(q · j(q, t))

q2
, (4)

jt(q, t) = j(q, t)− q(q · j(q, t))
q2

· (5)

Figure 1 shows Jl(q, ν) and Jt(q, ν) for different val-
ues of q up to 1.0 Å−1 at the temperature T = 2750 K.
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Fig. 2. Jl(q, ν) and Jt(q, ν) for various wave-vectors at T = 2750 K. (a) Jl for O-O, (b) Jl for Si-O, (c) Jl for Si-Si, (d) Jt for
O-O, (e) Jt for Si-O, (f) Jt for Si-Si.

(The functions for the silicon-silicon and the silicon-
oxygen correlations exhibit qualitatively the same behav-
ior, which is reasonable for such small wave-vectors.) Note
that even at the relatively high temperature T = 2750 K,
our SiO2 model is quite viscous with a viscosity of about
380 P, and moreover, that this temperature is well be-
low the critical temperature Tc of mode-coupling theory,
which is at 3330 K [31], in agreement with the experi-
mental estimate [39]. Thus within the framework of the
idealized MCT we are indeed probing the system deep in
the glass regime where it can make the structural relax-
ation only via activated processes which are neglected in
the idealized theory. Indeed we have shown in our pre-
vious work [31] that diffusion takes place via a hopping-
like motion below Tc. In Figure 1a we show Jl(q, ν) and
Jt(q, ν) in the frequency range between 0.4 and 4.6 THz for
the four lowest q values of our simulation, q = 0.13 Å−1,
0.18 Å−1, 0.23 Å−1, and 0.26 Å−1. At q = 0.13 Å−1 we
recognize that there are two peaks, corresponding to the
longitudinal and the transverse part of the current, which
are well separated from each other. For increasing wave-
vectors these peaks move to higher frequencies whereby
their width becomes so large that they overlap more and
more with each other. In the following we call the excita-
tions corresponding to these peaks high frequency longitu-
dinal acoustic (LA) modes and high frequency transverse
acoustic (TA) modes, respectively. From the figure we see
that the TA excitations give the most important contri-
bution to the current spectra in that their amplitude is
about a factor 6–8 higher than that of the LA excita-
tions (note the different scales for Jl and Jt), in qualita-
tive agreement with the simulations of reference [23]. In
the wave-vector range in which the LA and TA modes hy-

bridize one would expect that plane waves are no longer
eigenmodes, and in the analysis of Taraskin and Elliott
it has indeed been shown explicitly that a longitudinal
or transverse plane wave with a q value around 0.2 Å−1

decays into a final state which can be characterized as a
superposition of plane waves with different wave-vectors
and polarizations, but with the same frequency [21].

At q = 1.0 Å−1 (Fig. 1b) the current correlation func-
tions are qualitatively different from those discussed so far
at lower q: In the transverse part one observes a plateau
between 3 and 11 THz, and in the longitudinal part the
LA peak around 16 THz seems to be sitting on top of a
flat background which is seen most prominently for 2 THz
≤ ν ≤ 6 THz. In order to describe in more detail the
change in the shape of the spectra that occurs at inter-
mediate values of q, we show in Figure 2 Jl(q, ν) and
Jt(q, ν) for the O-O, Si-O, and Si-Si correlations for q
up to 1.7 Å−1. At q = 0.47 Å−1 we observe in Jl(q, ν)
for the O-O correlations, apart from the LA peak around
6 THz, a peak around ν = 26 THz corresponding to an op-
tical excitation. If q is increased to 1.4 Å−1 the LA peak
moves to larger frequencies whereby a shoulder around
ν = 2 THz gets more and more pronounced. Now it be-
comes very clear that the intensity of the whole spectrum
is enhanced in that the LA and the optical peak sit on top
of a flat background. Also at q = 1.7 Å−1 there is a LA
peak but now its position has moved back to ν = 17 THz,
i.e. a smaller frequency than at q = 1.4 Å−1. In the case
of the Si-O correlations (Fig. 2b) the essential difference
to the O-O correlations is the negative amplitude of the
LA peak for q ≥ 1.4 Å−1 which indicates an antiphase
motion of the silicon and oxygen atoms. The curves for
the Si-Si correlations (Fig. 2c) show essentially only one
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difference compared to those for the O-O correlations in
that the optical band has a higher weight in the spectrum
than the LA excitations. This is due to the fact that the
silicon atoms are bonded stronger in the tetrahedral net-
work than the oxygen atoms, and thus on small length
scales more localized motions have a higher weight in the
case of the silicon atoms which corresponds to frequencies
in the optical band.

Also in the transverse case for the O-O correlations
(Fig. 2d) the whole spectrum sits on top of a flat back-
ground. The intensity of the TA peak around 3 THz de-
creases with increasing q whereas there is an increase in
the intensity around 9 THz. As a result a broad flat band
is obtained for ν < 17 THz. In contrast to the O-O corre-
lations, Jt(q, ν) for the Si-O correlations (Fig. 2e) shows
a strong overall decrease of the intensity if q is increased
from 1.0 Å−1 to 1.7 Å−1. This can be easily understood
because at q = 1.7 Å−1 the current correlation functions
measure to a great extent the single particle motion, and
therefore the relative motion of the silicon and oxygen
atoms gives only a small contribution to the spectra. The
most remarkable feature in Jt(q, ν) for the Si-Si correla-
tions is again that, compared to the O-O correlations, the
optical excitation around 20 THz has a larger amplitude
than those of the acoustic band for q ≥ 1.0 Å−1.

The essential result which is shown in Figure 2 is that
for intermediate values of q the whole spectrum is placed
on top of a flat background. A similar feature has also
been found by Mazzacurati et al. [40] in a Lennard-Jones
system. These authors have identified the flat background
directly in the spectra and in the participation ratio which
measures the number of particles that contribute to the
eigenmodes at a certain frequency. At the low frequency
edge of the density of states the participation ratio has
values expected for localized modes. Such a behavior of
the participation ratio has also been found in the case of
silica [41]. Mazzacurati et al. have explained this behavior
by showing that the eigenvectors for low frequencies can
be represented by a few long-wavelength standing waves
plus a random contribution where the random contribu-
tion is seen in the spectrum as the flat background. In a
phonon picture one can interpret the flat background as
the contribution of multiphonon excitations.

By reading off the peak maxima [42] in Jl(q, ν) and
Jt(q, ν) corresponding to the longitudinal and transverse
acoustic modes one gets dispersion like branches νl(q) and
νt(q) which are shown in Figure 3a for T = 2750 K and in
Figure 3b for T = 300 K. It is remarkable that νl(q) and
νt(q) exhibit essentially the same behavior in the viscous
liquid state (T = 2750 K) and the glass state (T = 300 K).
This shows that in this (high) frequency window there is
no relevant difference between a viscous liquid and a glass
which gives support to the idea of reference [19] that in
this frequency range the viscous liquid can be treated like a
glass. Furthermore, we note that both functions look very
similar to the ones found in simple liquids [38]: The longi-
tudinal branch νl(q) has a periodic structure with a mini-
mum located around qm = 2.8 Å−1, which is the location
of the second sharp diffraction peak in the static structure
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Fig. 3. Peak maximum position νl,t(q) for the LA and TA
modes for the Si-Si correlations (filled symbols) and the O-O
correlations (open symbols) at (a) T = 2750 K and (b) T =
300 K. The bold lines are fits with linear laws να = cαq/(2π)
for which the corresponding values for the sound velocities cα
are given in the figure.

factor and which corresponds to length scales of intrate-
trahedral distances [31]. Thus, qm/2 can be interpreted,
in analogy to crystals, as a quasi Brillouin zone. The min-
imum in νl(q) at qm can be easily understood since the
particles tend to favor relative separations of 2π/qm, and
therefore, at these wavelengths it costs a relatively small
amount of energy to excite a collective mode correspond-
ing to a relatively small frequency. In contrast to what
one would expect for simple liquids, the minimum in νl(q)
is not observed at q = 1.7 Å−1, the location of the first
sharp diffraction peak in the static structure factor [31].
This is due to the fact that this q value corresponds to
length scales of connected SiO4-tetrahedra, a structural
unit which is less stiff than one tetrahedron itself. Also
different from simple liquids is the positive dispersion of
νl(q) for 0.4 Å−1 < q < 1 Å−1 which is probably also due
to the order on the length scale of the tetrahedra. The
behavior of νl(q) is in agreement with the findings in a
neutron scattering experiment by Arai et al. [43], and was
also found in the computer simulations of Taraskin and
Elliott [41]. The transverse branch νt(q) becomes rather
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the experimental data of Vo-Tanh et al. [44] which we have
multiplied with the factor (2.2/2.37)0.5 in order to take into
account the different density of our simulation from that of
the experiment.

flat for q > 0.9 Å−1 which is an indication of the over-
damped character of the TA excitations at these wave-
vectors.

Also included in Figures 3a and 3b are fits of the form
να(q) = cαq/(2π), where cl and ct denote the longitu-
dinal and the transverse high frequency sound velocity,
respectively. The values for cα obtained from these fits
are given in the figures. We recognize that for q up to
around 0.4 Å−1 this linear dispersion law holds, which
is expected for propagating sound waves at sufficiently
small q. We have determined the longitudinal and trans-
verse sound velocity for all temperatures considered by
calculating cα = 2πνα/q for the two lowest q values of our
simulation q = 0.13 Å−1 and q = 0.18 Å−1. The sound
velocities obtained in this way are shown in Figure 4 as
a function of temperature. Note that cα as determined
from q = 0.13 Å−1 and from q = 0.18 Å−1 differ by less
than 7% from each other, which shows that these wave-
vectors are small enough to determine cα reliably. From
3760 K to 6100 K the longitudinal sound velocity decreases
by about 50% which means that the system undergoes a
crossover from high frequency sound at 3760 K to hydro-
dynamic sound at 6100 K. This is further supported by
the behavior of the transverse sound at very high tem-
peratures. Therefore no data is shown for ct at 6100 K
in the figure because at this temperature only a peak at
ν = 0 is observed. This behavior is in agreement with hy-
drodynamics which predicts that transverse fluctuations
are transported diffusively and therefore contribute to the
spectrum only with a peak at ν = 0. We have found, how-
ever, that even at T = 6100 K the restoring forces between
the particles are large enough to allow the propagation of
TA modes for q ≥ 0.35Å−1, which can be inferred by the
observation of a crossover from a peak around ν = 0 to a
peak at finite frequencies in this region of q.
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Also included in Figure 4 are the experimental sound
velocities measured by Vo-Tanh et al. [44] which are mul-
tiplied with the factor

√
2.2/2.37. This factor takes into

account that the density of our simulation, 2.37 g/cm3,
is slightly different from the experimental one, which is
2.2 g/cm3. With this “correction” the simulation repro-
duces the experimental data very well, both for the longi-
tudinal and the transverse sound velocities. It is remark-
able that our model reproduces the increase of cl with
temperature for T < 2300 K which is a well-known pe-
culiarity of vitreous silica [45]. That we do not observe a
pronounced increase of ct with T for T < 1100 K as in
the experiment is probably due to the much higher fictive
temperature in our simulation. Note that the experimen-
tal data have been obtained by Vo-Tanh et al. by means
of light scattering experiments for values of q of the order
10−3 Å−1, i.e. about two orders of magnitude below the
q values of our study. Since, however, it has been shown
by Benassi et al. [7] that at least the longitudinal sound
velocities do not change in this q range, i.e. essentially the
same value for cl is measured in Brillouin scattering ex-
periments and in X-ray scattering up to q ≈ 0.35 Å−1, it is
reasonable to compare the values of cα from reference [44]
with our data.

In order to determine, independent of a model, the
width of the peaks corresponding to the LA and TA ex-
citations, we have calculated the full width at half max-
imum, Γα(q), of Jα(q, ν), which is shown in Figure 5 for
the LA and TA modes. We recognize from this figure that
a quadratic fit describes the longitudinal half width well
in the q interval 0.18 Å−1 ≤ q ≤ 0.5 Å−1. Such a be-
havior has also been found in the experiment by Benassi
et al. [7] which was done at T = 1050 K. The linear dis-
persion for νl(q) and the quadratic law Γl(q) ∝ q2 support
the picture that for q < 0.4 Å−1 the system behaves like
an isotropic elastic medium with respect to the propaga-
tion of the bare LA phonons [38]. For q ≥ 0.6 Å−1 Γl(q)
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increases only rather weakly up to q = 1.1 Å−1. Then
this function decreases significantly and reaches a mini-
mum in the vicinity of the first sharp diffraction peak at
q = 1.6 Å−1. This is probably due to the fact that the
strong spatial correlations on the length scale of two con-
nected SiO4 tetrahedra decrease the damping of the LA
excitation. The fact that Γl(q) becomes a weakly varying
function of q for intermediate q has also been found in the
recent MCT calculation [19] for a hard sphere system. So it
seems that this is a general feature in the dynamics of su-
percooled liquids and glasses. It is also important to note
that in the q range 0.6 Å−1 < q < 2.0 Å−1 the width Γl(q)
is significantly smaller than νl(q) (see Fig. 5). It is clear,
however, that from the fact that Γl(q) < νl(q) one cannot
conclude that the modes for these wave-vectors are prop-
agating, since the Ioffe-Regel crossover is already around
0.4 Å−1, and according to reference [24] at even lower fre-
quencies. Thus this shows that from the line-width alone
it is not possible to conclude unambiguously, whether or
not a mode is propagating or not. Finally we mention that
no data points are available between 1.1 and 1.4 Å−1 be-
cause the LA peak overlaps with the optical band in this
q range and thus they cannot be identified uniquely.

From Figure 5 we also see that the transverse peak
width Γt(q) can be described by an effective power law
with exponent 2.5, Γt(q) ∝ q2.5. Thus, the TA phonons
seem to be damped stronger than expected from an
isotropic elastic medium which would give an exponent 2.
In the q region above 0.5 Å−1 the width Γt(q) becomes
larger than the corresponding location of the maximum
of the peak νt(q). Therefore, we observe a Ioffe-Regel
crossover in the transverse case where the TA excitations
lose their propagative character and become strongly over-
damped. Note that this is the q region for which νt(q)
becomes more or less flat, in contrast to νl(q).

3.2 Density correlations

Studying the density-density-correlation function in the
q-ν-domain, i.e. the dynamic structure factor,

S(q, ν) =
1
N

∫ ∞
−∞

dt

×
〈

exp (i2πνt)
N∑

k,l=1

exp (iq · (rk(t)− rl(0)))

〉
, (6)

is of special interest because this quantity can be directly
measured in neutron scattering experiments. S(q, ν) is
related to the longitudinal current correlation function
Jl(q, ν) by the simple equation

S(q, ν) =
q2

4π2ν2
Jl(q, ν) (7)

which holds because of the continuity equation for particle
number conservation [38]. Equation (7) means that S(q, ν)
and Jl(q, ν) contain the same information but features at
lower frequencies are strongly enhanced in S(q, ν) because
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Fig. 6. (a) Dynamic structure factor S(q, ν) for the O-O cor-
relations at T = 2750 K for several values of q. (b) S(q, ν) at
q = 1.7 Å−1 (bold solid line) and Jt(q, ν) for the five lowest q
values of our simulation. The bold dashed line shows the sum of
the latter current correlation functions divided by 1.6. (c) Self
part of the dynamic structure factor Ss(q, ν) for q = 0.13 Å−1,
q = 0.23 Å−1, q = 0.32 Å−1, and q = 0.41 Å−1.

of the factor 1/ν2. Moreover, S(q, ν) exhibits a quasielastic
line around ν = 0 whereas Jl(q, ν) approaches zero for ν →
0. Therefore, one has to investigate density fluctuations in
order to understand the relationship between vibrational
and relaxational dynamics, which is one of the goals of the
present section, since the latter is seen mainly at small ν.

In Figure 6a S(q, ν) is shown for several values of q
at T = 2750 K. At the three lowest q values of our sim-
ulation, q = 0.13 Å−1, 0.18 Å−1 and 0.23 Å−1, one sees
essentially one peak which corresponds to the longitudinal
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acoustic excitations moving to higher frequencies with in-
creasing q. At higher values of q the LA excitation is only
visible as a shoulder until it reaches q = 1.7 Å−1 at which
it can be identified as a broad peak around ν = 17 THz.
The reason why this excitation is relatively hard to see
is due to the fact that for q > 0.23 Å−1 a second peak
is present in S(q, ν) which is located nearly independent
of q around ν = 1.7 THz. This peak is the so-called bo-
son peak which is also seen experimentally for silica in
Raman and neutron scattering [3,4,6,14]. Wischnewski
et al. [14] have found in their neutron scattering experi-
ment of silica that the location of the boson peak changes
from νBP = 1 THz at T = 155 K to νBP = 1.5 THz at
T = 1673 K. If we extrapolate this behavior to 2750 K
our value νBP = 1.7 THz seems to be quite reasonable.
Note also that Inamura et al. [46] have shown that the
position of the boson peak at T = 300 K shifts by about
20% to a higher frequency if one increases the density from
2.2 g/cm3 (at normal pressure) to 2.32 g/cm3.

From the figure we also see that to the left of the bo-
son peak two additional peaks are present in the curve
for q = 1.7 Å−1. The location of these two peaks is at
ν = 0.75 THz and ν = 1.05 THz and we have checked
that they are not due to bad statistics nor due to arti-
facts of the Fourier transformation [47]. In order to dis-
cuss their origin we have plotted in Figure 6b S(q, ν) at
q = 1.7 Å−1 and Jt(q, ν) for the five lowest q values of our
simulation q = 0.13 Å−1, 0.18 Å−1, 0.23 Å−1, 0.26 Å−1,
and 0.29 Å−1. Also included in Figure 6b is the sum of
these transverse current correlation functions Jt,sum (bold
dashed line) which we have tried to scale onto S(q, ν)
by dividing it by 1.6 in order to compare the shape of
this function with that of S(q, ν). From the comparison of
Jt,sum with the dynamic structure factor we can conclude
that the main contribution to the low frequency part of the
boson peak comes from the coupling to the TA modes at
q = 0.13 Å−1, 0.18 Å−1, and 0.23 Å−1. The mechanism of
how these modes couple to density fluctuations at higher
q, e.g. at 1.7 Å−1 in Figure 6b, is due to elastic scattering
since the energy of the scattered TA modes is conserved,
in agreement with reference [23]. We have seen before that
the boson peak can only be observed for q > 0.23 Å−1,
which is exactly the region of q in which the LA and TA
peaks in J(q, ν) begin to overlap (see Fig. 1a). That the
transverse part is of special importance is plausible since
the intensity of the TA peaks is a factor 6–8 higher than
that of the LA peaks in the current correlation functions
at fixed q (see Fig. 1). Note that around ν = 1.0 THz
the band of acoustic modes is not dense in our simulation
because of the finite size of the simulation box. For this
reason one would expect that the intensity of the low fre-
quency part of the boson peak is underestimated by our
simulation. But as it is demonstrated by Figure 6b, this
property of the finite size system allows us to identify the
influence of the low q TA modes on S(q, ν) at much larger
q and small ν.

One might argue that the experimental result, that the
boson peak is observed in the Raman spectra of vitreous
silica for q values around 10−3 Å−1, is in contradiction to

our simulation in which we find this peak in S(q, ν) only
for q > 0.23 Å−1. But this is probably due to the fact that
in Raman scattering a strong coupling of the light to the
incoherent part of the density fluctuations is present. In-
deed in our simulation the boson peak is also visible in the
self part of the dynamic structure factor Ss(q, ν) which is
obtained from equation (6) for S(q, ν) by taking into ac-
count only the terms with k = l in the sum. As can be
seen in Figure 6c even at q = 0.13 Å−1, the smallest acces-
sible wave-vector, we observe the boson peak in Ss(q, ν)
and this quantity also exhibits the sharp peaks around
ν = 0.8 THz and ν = 1.05 THz that stem from the TA
modes. Furthermore, the shape of the different curves in
this figure seems to be independent of q. If this is the case
this means that Ss(q, ν) can be factorized into a q depen-
dent part and a purely frequency dependent part. Indeed
this has been predicted recently in an analytic calculation
by Götze and Mayr [19] for a hard sphere system within
the mode coupling theory of the glass transition, and they
found that the q dependent part is proportional to q2. In
order to test whether this prediction holds we have plot-
ted Ss(q, ν)/q2 for oxygen in Figure 7a (Ss(q, ν) for silicon
exhibits the same behavior). We recognize that the curves
for 0.13 Å−1 ≤ q ≤ 1.0 Å−1 fall nicely onto one master
curve in the whole frequency range 0.5 THz ≤ ν ≤ 10 THz
whereas at larger q small deviations from the master curve
are visible around the location of the boson peak, i.e. for
frequencies 0.5 THz< ν < 5 THz. To study the q depen-
dence of Ss(q, ν) in more detail we show in Figure 7b a
double logarithmic plot of this quantity at the frequencies
1.64 THz, 3.02 THz, 10.01 THz, and 30.02 THz. We see
that fits with quadratic laws (bold lines in the figures)
hold very well, at least for q < 2.0 Å−1. This means that
the whole spectrum scales with q2 in this q range. Note
that a similar behavior was also found in a simulation of
ZnCl2 [48].

From the harmonic approximation one would expect
that S(q, ν) is proportional to temperature. For this rea-
son we have plotted in Figure 8 S(q, ν)/T as a func-
tion of frequency at q = 1.7 Å−1 for the temperatures
T = 3760 K, 2750 K, 1670 K, 1050 K, and 300 K. We rec-
ognize that the curves for the different temperatures fall
roughly on top of each other. This means that also in the
region of the boson peak our silica model is quite harmonic
even at the relatively high temperature T = 3760 K. Fur-
thermore, two important observations can be made from
Figure 8: Firstly, we recognize that the low frequency wing
of the boson peak is steeper than the high frequency wing.
And secondly, at T = 3760 K the boson peak feature
can only be seen as a shoulder which grows out of the
quasielastic line. Both observations are in agreement with
the theoretical finding of Götze and Mayr [19] that there
is a low frequency cutoff ν− in the spectrum of the boson
peak, whereby ν− decreases with the control parameter
of the glass transition (in our case the temperature) such
that above about 10% of the critical point the boson peak
appears as a shoulder under the quasielastic line.

Since the behavior of S(q, ν) is very similar to that at
T = 300 K (as we have also demonstrated before in the
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discussion of the current spectra) it is justified to analyze
in the following the boson peak at the two temperatures
T = 3760 K and T = 2750 K. The investigation of the
spectra of the liquid state has of course the advantage
that in this case the system is in equilibrium. So, firstly
we do not have to worry about the history of the system,
and secondly, we are able to show how the vibrational
properties are coupled to the structural relaxation of our
silica model.

If it is indeed true that TA modes with q < 0.2 Å−1

couple to density fluctuations at higher q and thus give
rise to certain features in the boson peak, such as the ad-
ditional peak at ν = 0.8 THz, then these features should
be absent if the system size is so small that it does not
allow the propagation of TA modes with q < 0.2 Å−1. In
order to check this prediction we have calculated Ss(q, ν)
at T = 3760 K for the system sizesN = 336 and N = 1002
in addition to N = 8016. As the same density as for
N = 8016 is used, ρ = 2.37 g/cm3, the sizes of the simula-
tion boxes are L = 16.80 Å and L = 24.18 Å for N = 336
and N = 1002, respectively. Thus the smallest q values
are q = 0.37 Å−1 and q = 0.26 Å−1. In Figure 9 we
show the obtained Ss(q, ν) at q = 0.37 Å−1, 1.7 Å−1, and
4.75 Å−1 for the three system sizes. Whereas the curves
for the different system sizes coincide for frequencies that
are larger than a weakly N dependent frequency νcut(N),
for ν < νcut(N) the magnitude of Ss(q, ν) decreases with
decreasingN . Independent of q we read off νcut ≈ 1.7 THz
for N = 336 and νcut ≈ 1.2 THz for N = 1002. Both fre-
quencies are marked by vertical lines in Figure 9. νcut(N)
is indeed just slightly below the frequency of the transverse
excitation corresponding to the lowest q value determined
by the size of the simulation box. These frequencies are
at ν = 1.85 THz for N = 336 and at ν = 1.35 THz for
N = 1002. Thus this is evidence that the missing of the
TA modes with q < 0.2 Å−1 causes the finite size effects
in the small systems. This point of view is also supported
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by the fact that at 300 K the frequency of the TA mode
at q = 0.26 Å−1 and q = 0.37 Å−1 are at 1.4 THz and
1.9 THz, respectively (see Fig. 3b), thus very close to the
corresponding values νcut(N) where we find a missing in-
tensity in Ss(q, ν).

Due to the sum rule
∫

dν Ss(q, ν) = 1, the loss of inten-
sity in the boson peak below νcut(N) has to be “reshuffled”
to smaller frequencies leading to a broadening and an in-
crease of the intensity of the quasielastic line around ν = 0.
Since the quasielastic line is outside the frequency resolu-
tion of our Fourier transformation the consequences in the
change of the quasielastic line can be observed better in
the Fourier transform of Ss(q, ν), i.e. the incoherent inter-
mediate scattering function Fs(q, t) which is defined as

Fs(q, t) =
Nα
N

∫ ∞
−∞

dν exp (i2πνt)Ss(q, ν) α ∈ [Si,O].

(8)

We have already analyzed the behavior of Fs(q, t) for dif-
ferent system sizes in a recent publication [49]. In this
work we have shown that with decreasing system size the
α-relaxation time τα, i.e. the characteristic time scale at
which Fs(q, t) decays to zero, shifts to longer times, and
furthermore, the height of the plateau in Fs(q, t), i.e. the
Lamb-Mössbauer factor, increases. E.g. at T = 3760 K
τα increases from N = 8016 to N = 336 by about 40%,
and this effect is even larger at lower temperatures. It
is important to mention that the shape of the scattering
function does not change for long times by varying the
system size. In addition Fs(q, t) at T = 3760 K exhibits
a pronounced oscillation around t = 0.2 ps for small sys-
tem sizes whereas for N = 8016 this function decreases
monotonously. All this can be simply understood from
the ν-dependence of Ss(q, ν): For N = 8016 this quantity
shows a shoulder around 1.0 THz which corresponds to the
monotonous decay of Fs(q, t). In the small systems there
is a peak in Ss(q, ν) around νcut(N) which corresponds to
the oscillations in Fs(q, t) with a period 1/νcut(N). From
the fact that the band of the transverse acoustic modes is
not dense for the region of small q (see Fig. 6c) we expect
also for N = 8016 that finite size effects are present. But,
we have shown in our recent work that the finite size ef-
fects do not play an important role at N = 8016 since the
differences between the behavior of Fs(q, t) at N = 3006
and at N = 8016 are already small.

Of course, the finite size effects are also important
in the total dynamic structure factor. Figure 10a shows
S(q, ν) for the two system sizes N = 8016 and N = 336 at
T = 2750 K and the three q values q = 0.9 Å−1, 1.7 Å−1

and 4.75 Å−1. We can again identify a cut–off frequency
around 1.7 THz below which there is a loss of intensity
in S(q, ν) for N = 336. Note that the sharp peaks at
ν = 0.75 THz and ν = 1.05 THz are again not present in
the small system. Moreover, we recognize that the relative
intensity loss in the small system compared to the large
system depends on q. In order to quantify this q depen-
dence we define the ratio

R(q, ν) :=
SN=8016(q, ν)
SN=336(q, ν)

− 1 (9)
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Fig. 10. (a) The dynamic structure factor for the O-O cor-
relations for the system sizes N = 8016 and N = 336 at the
wave-vectors q = 0.9 Å−1, 1.7 Å−1, and 4.75 Å−1 and the
temperature T = 2750 K. (b) R(q, ν) (definition see text) for
several values of q as a function of frequency at T = 2750 K.
(c) R(q, ν) for ν = 0.75 THz (filled circles) and ν = 1.05 THz
(open squares) as a function of q at T = 2750 K. Also included
is Rs(q, ν) at the same frequencies obtained from Ss(q, ν) (bold
lines).

which is zero if the dynamic structure factor coincides for
the two system sizes. Figure 10b shows R(q, ν) for sev-
eral values of q. Its behavior underlines what we have said
before that the low frequency part of the boson peak is
mainly due to the elastic scattering of the two TA modes
with the frequencies ν = 0.75 THz and ν = 1.05 THz cor-
responding to the lowest q values of our simulation for the
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system size N = 8016. Obviously, the amplitudes of the
peaks in R(q, ν) do not change monotonously as a func-
tion of q. In order to investigate this q dependence, R(q, ν)
is plotted in Figure 10c for the frequencies ν = 0.75 THz
and ν = 1.05 THz as a function of q. R(q, ν) shows pro-
nounced maxima at q = 1.6 Å−1, i.e. in the vicinity of the
location of the first sharp diffraction peak in the static
structure factor, and at q = 2.8 Å−1, which is the location
of the second peak in S(q, ν). Thus, the structural disor-
der on the length scale introduced by two connected SiO4-
tetrahedra, is most relevant for the scattering of the TA
modes with q < 0.2 Å−1. Also included is Rs(q, ν) for the
two frequencies which is obtained by putting in Ss(q, ν)
instead of S(q, ν) into the definition (9). The incoherent
partRs(q, ν) decreases monotonously with q which is plau-
sible since the finite size effects should vanish at very large
values of q corresponding to small length scales.

4 Summary and conclusions

We have done molecular dynamics simulations in order
to investigate the dynamics of amorphous silica at high
frequencies. The results which we have presented in this
paper concern the fully equilibrated liquid and the glass
state for frequencies ν ≥ 0.5 THz and for wave-vectors
with magnitude q ≥ 0.13 Å−1 (limited by the size of the
simulation box).

In a first step we have discussed the properties of
the longitudinal and transverse current correlation func-
tions. At low frequencies we have identified propagating
longitudinal acoustic (LA) and transverse acoustic (TA)
modes, the maxima of which move to higher frequencies
with increasing q (to a good approximation linearly up to
0.4 Å−1). The amplitude of the TA peaks is a factor 6–
8 larger than that of the LA peaks at a fixed value of q
which is an indication for the importance of the transverse
dynamics in silica even at temperatures as high as 3000 K.
Whereas the LA peak is separated quite well from the TA
peak on the frequency axis at q = 0.13 Å−1, both peaks
begin to overlap at higher q. The q region at which the LA
and TA peaks begin to overlap significantly can be seen
as a crossover region from a regime where the longitudi-
nal and transverse modes exhibit only a weak interaction
to a regime where a strong interaction between different
modes is present. One important sign of this is that the
qualitative shape of the spectra starts to change gradually
around q = 0.6 Å−1: The LA peaks are still well-defined,
but they are now sitting on top of a flat background. The
acoustic band in Jt(q, ν) shows a similar behavior in that
it evolves into a broad plateau from about 3 to 11 THz.
The observation that the acoustic modes are located on
top of a flat background for intermediate values of q has re-
cently been found by Götze and Mayr [19] as an essential
result in their analytic calculation of the spectra within
mode-coupling theory. Within their theory these authors
have explained the existence of the flat background spec-
trum by the presence of inelastic phonon scattering where
a mode decays into two modes due to anharmonicity.

By reading off the peak maxima in Jl(q, ν) and Jt(q, ν)
as a function of q, one obtains dispersion like functions
νl(q) and νt(q) for the longitudinal and transverse part,
respectively. νl(q) shows an approximately linear behav-
ior for wave-vectors up to 0.3 Å−1. On the other hand the
full width at half maximum Γl(q) of the LA peaks is well
described by a quadratic law for q ≤ 0.5 Å−1. This means
that to a good approximation the system behaves like an
isotropic elastic medium up to this q range with respect to
the longitudinal sound modes. Furthermore, νl(q) exhibits
a quasi Brillouin zone at qm/2 where qm is the location of
the second sharp diffraction peak in the static structure
factor corresponding to length scales of intra-tetrahedral
distances. Also νt(q) shows approximately a linear behav-
ior at small q, but the data for Γt(q) cannot be described
by a quadratic law. Instead, Γt(q) is fitted well with a
q2.5 law from which we conclude that the TA excitations
are stronger damped than expected from an isotropic elas-
tic medium. For q > 0.8 Å−1 νt(q) becomes flat, and in
the same range the TA excitations become strongly over-
damped in that they reach a Ioffe-Regel limit, i.e. Γt(q) is
of the order of νt(q). Γl(t) becomes a weakly varying func-
tion for 0.6 Å−1 < q < 2.0 Å−1, a feature which is also
found in the MCT calculation by Götze and Mayr [19].

From the two lowest q values of our simulation, q =
0.13 Å−1 and 0.18 Å−1, we have determined the apparent
high frequency sound velocities for the different temper-
atures and find that they reproduce the light scattering
data by Vo-Tanh et al. [44] very well. Thus this is another
example that the BKS model is able to reproduce reliably
the experimental data of amorphous silica.

In a second step we have discussed density fluctua-
tions by means of the dynamic structure factor S(q, ν). For
q > 0.23 Å−1 this quantity exhibits a boson peak which
is located nearly q independent around νBP = 1.7 THz
at T = 2750 K. The boson peak excitations coexist with
the LA modes since the latter is visible also at frequencies
above νBP. Since the boson peak has a much larger inten-
sity than the LA peak, e.g. a factor of 7–8 for q = 1.0 Å−1,
the LA excitations are visible only as a shoulder in S(q, ν).
Only if the LA peak has moved to high frequencies, e.g. to
17 THz at q = 1.7 Å−1, one observes this peak as an inde-
pendent second peak in addition to the boson peak in the
dynamic structure factor. In the low frequency part of the
boson peak two sharp peaks are present at ν = 0.75 THz
and ν = 1.05 THz which are due to the elastic scattering
of the TA modes with q = 0.13 Å−1 and q = 0.18 Å−1,
respectively. We will discuss them in more detail below.

As expected from the harmonic approximation the
dynamic structure factor S(q, ν) scales for frequencies
around νBP roughly with temperature in the range
3760 K ≥ T ≥ 300 K. The behavior of S(q, ν) in this
temperature range supports the view of reference [19]: At
T = 3760 K the boson peak feature can be only seen as
a shoulder which grows out of the quasielastic line. So
this feature becomes visible as soon as the temperature is
around Tc, which for our system is around 3330 K [31].
Moreover, below Tc the boson peak shows a low frequency
cutoff such that its low frequency part decreases much
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steeper than its high frequency part. Also this observa-
tion is in agreement with the prediction of reference [19].

For wave-vectors up to about 1–2 Å−1 the self part of
the dynamic structure factor Ss(q, ν) exhibits a factoriza-
tion into a frequency dependent and wave-vector depen-
dent part whereby the latter is proportional to q2. Apart
from the fact that this property of Ss(q, ν) has also been
found in a MD simulation of ZnCl2 [48] it is remarkable
that this result comes out of the mode coupling calcula-
tion of Götze and Mayr [19]. So this is another important
feature which is reproduced by this theoretical approach.

In order to get more insight into the boson peak fea-
ture we have done simulations also for smaller system sizes
than our normally used system size N = 8016. We have
found strong finite size effects in the low frequency part of
the boson peak which can be characterized by a frequency
νcut(N) below which there is a lack of intensity in the dy-
namic structure factor. The frequency νcut(N) decreases
with increasing system size N and is essentially indepen-
dent of q. The reason for these finite size effects is due to
the absence of the TA excitations with q < 0.2 Å−1 in the
small systems since the smallest q value of our simulations
with N = 1002 and N = 336 particles are 0.26 Å−1 and
0.37 Å−1, respectively. In the time domain, i.e. in the inco-
herent intermediate scattering function Fs(q, t), the finite
size effects cause an increase of the Lamb-Mössbauer fac-
tor and of the α-relaxation time. This is a consequence of
the sum rule

∫
dν Ss(q, ν) = 1 since the missing of inten-

sity for ν < νcut(N) has to be “reshuffled” to smaller fre-
quencies. Because of the abrupt decrease of Ss(q, ν) below
νcut(N) in Fs(q, t) for small N quite pronounced oscilla-
tions for t > 0.2 ps are observed [49] whereby the period of
these oscillations is approximately equal to νcut(N). Note
that a similar behavior was also found in a MD simulation
by Lewis and Wahnström [50] for a model of orthoter-
phenyl in which the interactions between the molecules
are described by a Lennard-Jones potential. These au-
thors have suggested that a disturbance that propagates
through the system will leave and reenter the box due to
the periodic boundary conditions after a time L/c, where
L is the size of the box and c is the typical velocity of
the sound wave. This mechanism then produces an echo,
i.e. an additional signal which produces the slowed down
decay of the correlation functions like Fs(q, t). We have
also suggested this explanation recently for silica [49], but
we think now that this explanation for the finite size ef-
fects is not the correct one. Instead, the general argument
is that in small enough systems (with a smallest wave-
vector with magnitude qs) parts of the vibrational spec-
trum are missing below a frequency νcut(N) because of
the coupling to wave-vectors with q < qs occurring in an
infinite system. In a Lennard-Jones system such a cou-
pling is reflected in the flat background spectrum which
was shown to be present by Mazzacurati et al. [40]. In the
case of silica there is in addition the coupling which arises
from the elastic scattering of transverse TA modes with
small q by the structural disorder.

One may speculate that the strength of the boson peak
in silica is due the strong coupling of the TA excitations to

the longitudinal part. The stiffness of the tetrahedral SiO2

network introduces strong restoring forces which allow the
propagation of shear waves with a large amplitude even
at relatively high temperatures. We have shown that the
strongest scattering of the TA modes is at q ≈ 1.6 Å−1.
This is in agreement with suggestions in the literature
that the boson peak is caused by the interactions of sound
modes with coupled rotations of several tetrahedra [6,41].
A possible mechanism of this interaction would be that the
coupled rotations of the tetrahedra enable the change of
the polarization of transverse acoustic modes, so that they
contribute to the density fluctuation spectrum, i.e. con-
stituting at least part of the boson peak.

We thank A. Latz, M. Letz, W. Götze, G. Ruocco, and F.
Sciortino for many stimulating discussions during this work.
We also thank D. Vo-Tanh for providing us with the light scat-
tering data of the sound velocities. This work was supported by
BMBF Project 03 N 8008 C, by Schwerpunktsprogramm 1055
and SFB 262/D1 of the Deutsche Forschungsgemeinschaft. We
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